

PHOTON® SG 50 Increase productivity and ensure quality even under stressful conditions

January 2025

Power Point by Chuck Kupatt, Nicholas Phillips & Wolfgang Benz

What is PHOTON?

- PHOTON [®] SG 50 is a high active, solid, dust-free, organic-mineral special fertilizer with a very good price/performance ratio
- Marketing: Successfully on the market in numerous countries in the southern and northern hemisphere since 2015, tested and widely used in both specialty crops and arable farming!
- Formulations: PHOTON[®] SG 50 (extruder granules) and liquid formulations, also private labels

- Patents: NEW technology, patented worldwide until 2029, mixture patents with new partners granted until 2040 and beyond
- Ingredients: Mix of 4 dicarboxylic acids of natural origin (mainly azelaic acid) with contents of potassium (22% K2O), magnesium and boron.
 Note: Azelaic acid is also used worldwide as an ingredient in cosmetics.

What else about PHOTON?

- Application: Simple application via fertigation/irrigation or foliar treatment, the product is rainproof on the plant after 2-3 hours
- In the plant: Systemic distribution of the active ingredient within 24 hours, degradation in the cell after 2-3 weeks, no residues
- In practice: FOR BEST RESULTS Targeted, preventative (early) application, depending on the crop, 2 4 x applications in combination or in spraying sequence with crop protection/ leaf fertilizer, tried and tested in practice. In fruit growing, up to 6 x applications is also common for late varieties.
- Crops: Can be used in all crops, very good plant compatibility
- Dosage: 20 to 40 g/ha/application, depending on crop, strong effect with low application rate
- Mixability: Very good, with most important crop protection products and foliar fertilizers, synergistic effect with micronutrients and some biostimulants (spray sequences and tank mixtures),
 - -> for more information, use our service hotline!

TARGETS for plant production in row crops

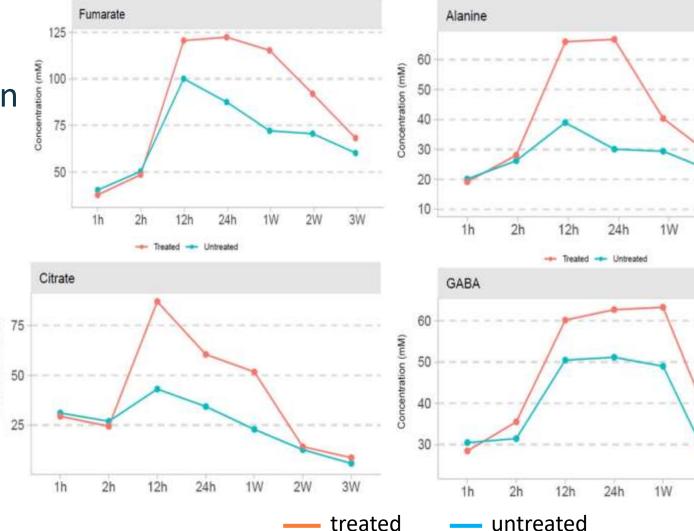
PHOTON ® promotes

- In general: early application promotes early leaf development and root growth
- in potatoes, the tuber plant, uniformity of tuber development and increase in size, thus increasing the marketable part. It can be used in any production segment, i.e. seed-, table-, processing- (french fries and chips) and starch potatoes
- for sugar beet: increase in yield/ha and adjusted sugar yields
- for grain maize: promotion of cob development and cob weight
- for legumes: support the development of pods and increase the yield
 A prerequisite for the best results:

1. follow the instructions for use: use as early as possible, keep an interval of 3 weeks!

2 PHOTON[®] only works optimally on fields managed with good agronomic practice (soil cultivation, fertilization and plant protection) -> use the service hotline!

2W


2W

3W

3W

How does PHOTON work?

Recent studies by the University of South Africa on soybeans and grain corn confirm earlier data in the literature: PHOTON promotes the formation on a number of importan organic acids, proteins an 2 75 enzyme systems.

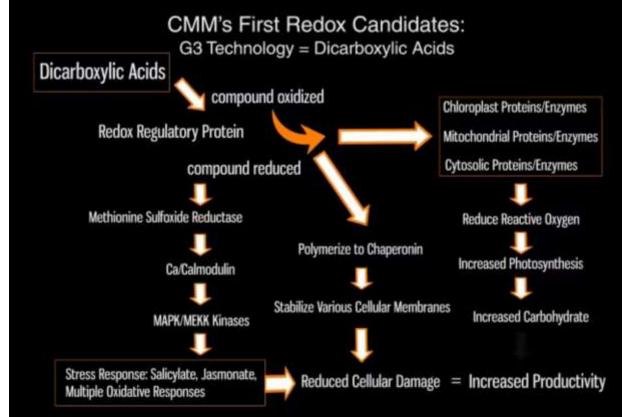
The increased values of ingredients that play a decisive role in the reaction of plants to abiotic stress allow an insight into the biochemical processes in the plant on which the positive (yield-increasing) results in trials with PHOTON are based.

In addition, the graphs provide a reason for the treatment intervals - in order to keep the ingredients at a high level, it makes sense to repeat the treatment after 3 weeks.

Source: Research article

¹H-NMR-based metabolomic profiling and proteomic analysis of soybean (Glycine max L.) in response to the application of dicarboxylic acids (Photon) as stress inducers.

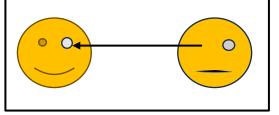
Mhlonipheni Nhlakanipho Msomi, * Gerhard Prinsloo, Noluyolo Nogemane Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Johannesburg, Gauteng Province, South Africa



The increased content of important substances in the plant through the use of PHOTON

- stabilizes membranes and cell structures (chaperonin function),
- improves the nutrient efficiency of calcium (calmodulin effect)
- neutralizes damaging radicals.

This increases and maintain the photosynthesis performance, as well as fruit/tuber and root formation and thus a sustainable yield.


This is particularly important under stressful conditions.

What role do stress factors play?

Just as in humans, certain environmental influences, e.g. stress caused by pesticides (i.e. Phytotox), cold and heat or radiation stress and other factors, also cause the formation of free radicals in plants.

These can affect the health and vigor of the plant, the condition of the cells, the firmness of tissue and skin, e.g. in fruits. The PHOTON application can help to counteract this. Free radicals lack an electron. They remove this electron from other cells and thus damage their structure.

To make optimum use of the protective effect, it is necessary to use PHOTON right in time and thus also <u>preventively</u>. When used preventively, dicarboxylic acids act as a kind of vaccine ("priming").

In which crops is PHOTON used?

PHOTON has been used worldwide for several years in numerous countries:

- In arable farming (in the USA mainly grain corn and soybeans, approximately 1.3 million hectares in 2024)
- In fruit crops (in the southern hemisphere mainly citrus, pome-, stone- and berry fruit and soft fruit, vine - and table grapes)

The result: improved yield and quality in all important crops, even under stress conditions

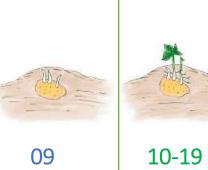
Application recommendation (selection)

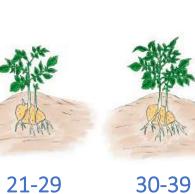
Culture	Dosage/ Application	Remarks
	40 g/ha (60 ml/ha)	Preventive
Sugar beet	3 - 4 applications, Interval 3-(4) weeks	From NAK ₁ in combination with crop protection and fertilization
Cereals, grain maize, legumes, rapeseed	2 applications, see separate instructions	1st juvenile stage, 2nd before generative phase for maize up to 80 cm in height
Citrus fruits	4-6 applications Interval 3 weeks	From 1 month before flowering until harvest
Pome and stone fruit, nuts	4 - 6 applications Interval 3 weeks	From flowering up to 3-4 weeks before harvest
	20-40g/ha (30-60ml/ha)	Preventive
Potatoes, vegetables (all types)	Usually 3-4 applications, interval 3 weeks	Start after planting (drenching also possible) Possible up to 3 weeks before harvest
Wine & table grapes, soft fruit	3 - 6 applications Interval 3 weeks	From flowering to shortly before harvest

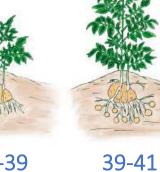
PHOTO

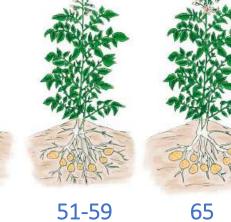
Application

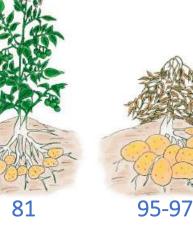
- For the sake of simplicity, we recommend volumetric dosing (doser included)
- **Particularly interesting:** Same application rate per ha for foliar application and fertigation/irrigation.
- When used alone, it is best to mix the product with non-ionic surfacants, e.g. Break Thru, Hasten etc.
- In combination with crop protection products, an adjuvant is helpful, but not absolutely necessary
- PHOTON is available in containers of 500 g (750ml),
 2 x 500g (1kg pack) and
 6 x 1kg pack (6kg carton) available




- In 2023 and 2024, the dosages and spraying sequences already tried and tested in other countries were validated throughout Germany (partly in Austria and Italy).
- Objective: Serious recommendation for D-A-CH taking into account the regional location conditions (facts and figures)
- 2 cultures as an example:
- **Potatoes:** 9 random trials and 10 practical tests, regional focus on Lower Saxony, North Rhine-Westphalia, Rhineland-Palatinate and Bavaria
- Sugar beet: 10 random trials and 5 practical tests, regional focus on Saxony-Anhalt, Lower Saxony, North Rhine-Westphalia and Bavaria




Potatoes


The ideal time to start the application: As early as possible, BBCH 15 at the latest

Picture: BOLAP, Speyer, 16.5.2023, late potatoes

September 2023, seed potato

Test results NORD-WEST, Ems-Elbe triangle, Geest

PHOTON SG 50 - Dosage 20 g/ha per application, treated 3 or 4 times

Yield estimate, confirmed by the farmers' harvest data!

Harvest: 2 replicates per variety, each 2.66 x 0.75 m (2 m² area)

Weights and number of tubers (grouped by tuber diameter) are given as an average.

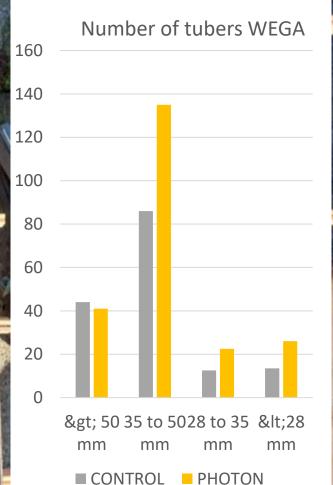
3 locations/ 7 varieties:

Group A: Location 1: Madeira, Milwa, Location 2: Gala, Wega, Princess

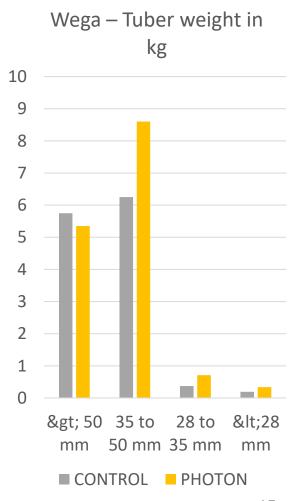
In each case 4 applications at intervals of 2-3 weeks, SUBSTANTIAL INCREASE IN YIELD

Group B: Location 3: Soraya, Goldmarie

3 applications at short intervals, **NO YIELD ADVANTAGE**



2023: seed potato


NORTH-WEST, Ems-Elbe triangle, Geest Variety: WEGA

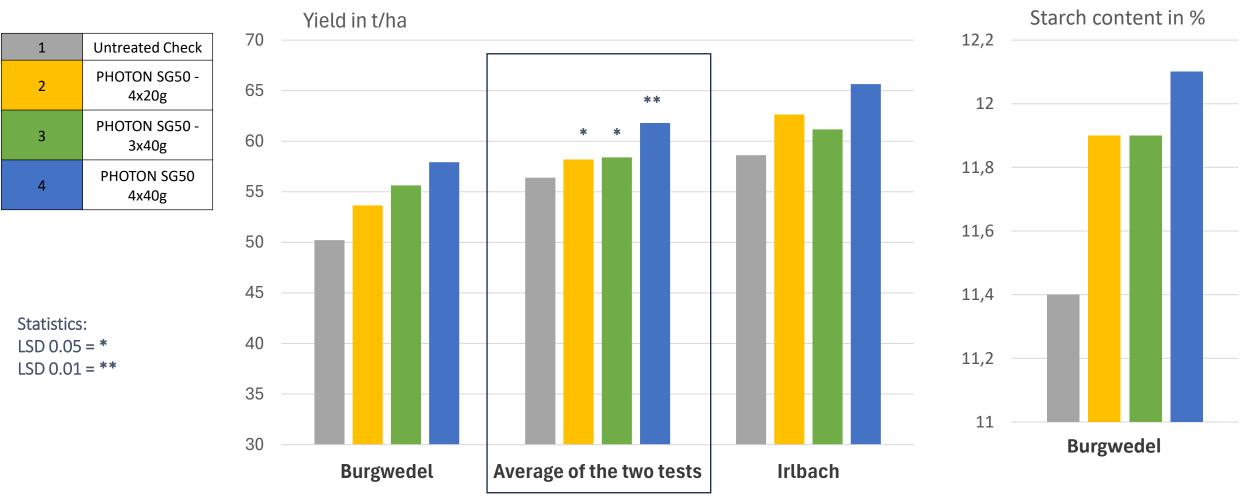
Dose: 20 g/ha, 4 applications Interval: 3 weeks

Dr. Wolfgang Benz

Potatoes 2024: A comparison of two locations

Random plot trial NORD, Lower Saxony, table potato								
Crop Trials, Dr. Paul Reh								
Location: Burgwedel, Hanover region								
Site is regularly supplied with	organic fertilizer							
(fermentation residues, liquid	d manure)							
Soil: (heath) sand, 30 BP (soil	points)							
pH 5.7 , Organic matter: 3.6 9	pH 5.7 , Organic matter : 3.6 %							
Variety: BELANA, Europlant	Spacing between rows: 75 cm							
	Spacing in rows: 32 cm							
Planting: 22.04.2024	: 32 cm							
Emergence: 02.06.2024								
Irrigation (25mm): 01.06.2024, 30.06.2024								
Precipitation: average 627 mm (Hannover)								
Harvest: 12.09.2024								

Random plot trial SOUTH-EAST Bavaria, starch potato								
Farmtastic, trials and advice								
Location: Irlbach, Straubing dis	trict							
Site is regularly supplied with o	rganic fertilizer							
(fermentation residues)	(fermentation residues)							
Soil type: silty loam, loess, 80 E	Soil type: silty loam, loess, 80 BP (soil points)							
pH 7.3 Organic matter : 2.9 %								
Variety: EUROVIVA, Europlant	Spacing between rows: 75 cm							
Planting: 09.04.2024	Spacing in rows: 32 cm							
Emergence: 30.04.2024								
Irrigation: no								
Precipitation: average 834 mm								
Harvest: 17.10.2024								

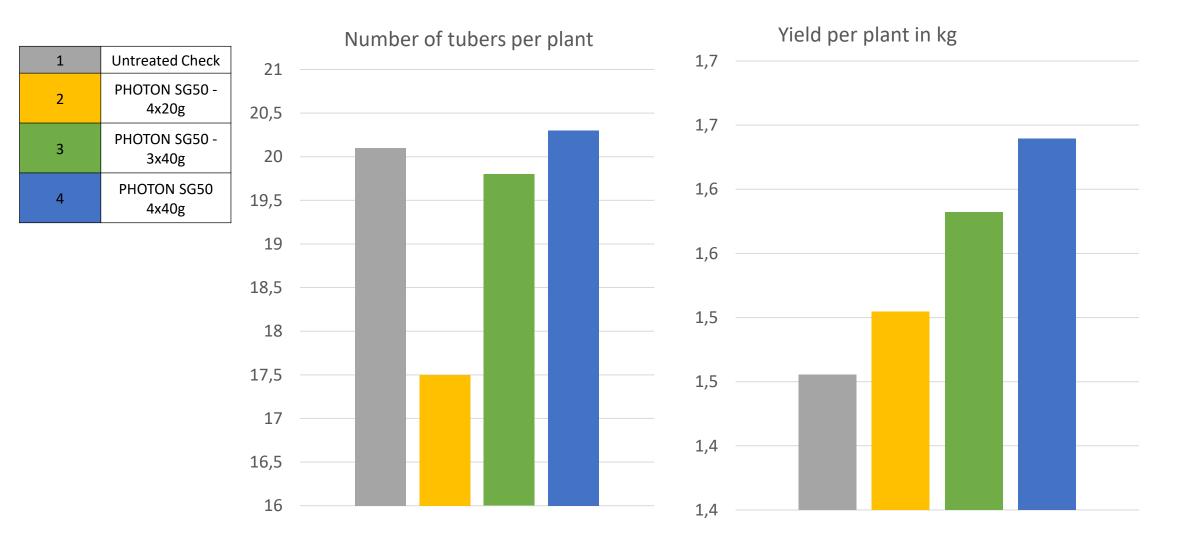

Test program and application

	Product	Formulation	Dosage	Number of applications
1	Untreated Check			
2	PHOTON	SG50	20g	4x
3	PHOTON	SG50	40g	Зх
4	PHOTON	SG50	40g	4x

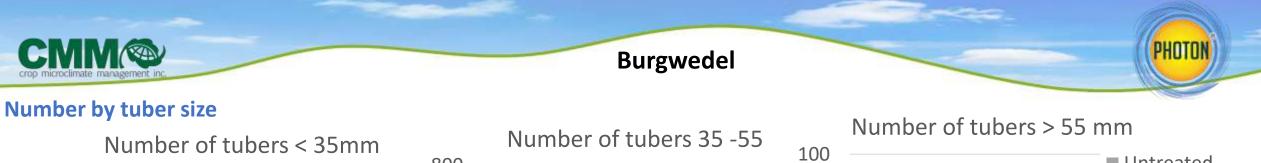
PHOTON 2024	T1														2	S.															
Application:	(BBCH		T2		ТЗ		T4				Ju	ni							Ju	ili							Aug	just	ł.,,,		
	15)								Мо	Di	Mi	Do	Fr	Sa	So		Мо	Di	Mi	Do	Fr	Sa	So		Мо	Di	Mi	Do	Fr	Sa	So
Irlbach								22						1	2	27	1	2	3	4	5	6	7	31				1	2	3	4
								23	3	4	5	Y	7	8	9	28	8	9	10	11	12	13	14	32	5	6	7	X	0	10	11
Date	14.05.		07.06.		26.06.		16.07.					A	-	0	-		-			V							-				
Difference in days		24		19		20		24	10	11	12	13	14	15	16	29	15	16	17	7 8	19	20	21	33	12	13	14	15	16	17	18
-				15		20		25	17	18	19	20	21	22	23	30	22	23	24	25	26	27	28	34	19	20	21	22	23	24	25
Burgwedel								26	24	25	26	X	28	29	30	31	29	30	31					35	26	27	28	29	30	31	
Date	06.06.		27.06.		18.07.		08.08.	-																							
Difference in days		21		21		21				(as	ar	ех	am	npl	e: C	ro	o Ti	rial	ls a	рр	lica	atic	on c	late	s, I	Bur	gw	ved	el)		

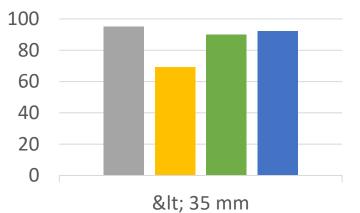
Two locations compared: Burgwedel and Irlbach

PHOT

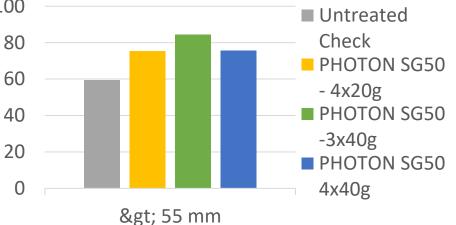


Irlbach (starch potato) **Burgwedel (ware potato)** Irlbach, starch yield in t/ha 14,5 13,5 12,5 11,5 10,5 Starch content in % Starch content in %

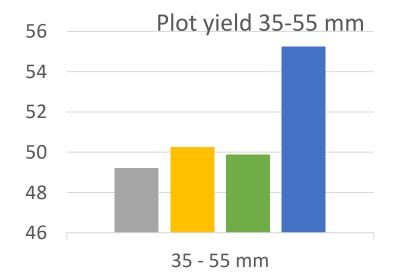

Untreated Check PHOTON SG50 - 4x20g PHOTON SG50 - 3x40g PHOTON SG50 4x40g

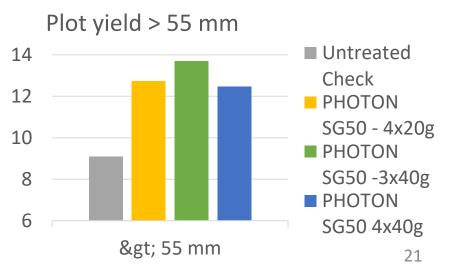

PHOT

Burgwedel



PHOTO





Yield by tuber size

PHOTON [®] SG 50 in POTATOES, CONCLUSION:

Using PHOTON[®] SG 50 correctly, we see the following advantages for the farmer:

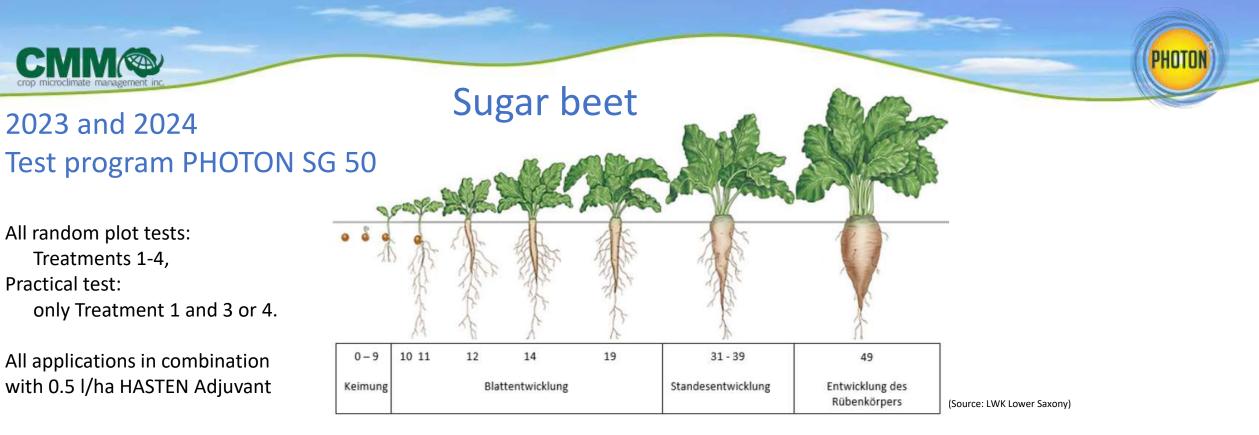
- Yield: due to a better tuber set and subsequent advantageous tuber development, yield increases of at least 7% to 14%. These results could be achieved in Chile, the UK, the USA and in the trial years 2023/24 in Germany. This at a yield level of 50 to 70 tons/ha
- External quality: Significant increase in fraction from 35 to 55 mm and larger
- Internal quality: slight increase in starch content (0.5 to 1%)

Use of PHOTON [®] SG 50 in POTATOES:

Start of the treatments:

- preventive use is a must!
- As early as possible, prerequisite uniform emergence of the plants, stage: e.g. "potatoes hand-width high", BBCH 15 at the latest

Dosage (in Central Europe)


both in "normal years" and in "expected stress"

• Standard: 40 g/ha , (3)- 4 x , 3 weeks interval,

3 x applications, e.g. for early table potatoes,

4 x appl. e.g. for table potatoes, processing potatoes (French Fries, Potato Chips etc.) and starch potatoes

 Basis: 20 g/ha, 4 x, 3 weeks interval, e.g. seed potatoes or mixture with biostimulants (enquire about type and dosage by telephone)

Applicat	ion dates a stage	according to	BBCH 11 to 13	BBCH 15 to 19	BBCH 33-35	BBCH 39 to 42
Variants		Dosage in	1 to 5 sheets	5 to 9 sheets	30 to 50%	over 90%
		g/ha	Herbicides	Insecticide	Closing date	Closing date
			NAK 1 to 3	Treatments	Insecticides, fungicides	Fungicides
1	Control	/				
2	PHOTON	20 g/ha	Х	Х	Х	Х
3	PHOTON	40 g/ha	Х	Х	Х	
4	PHOTON	40 g/ha	Х	Х	Х	Х

Two sugar beet locations compared

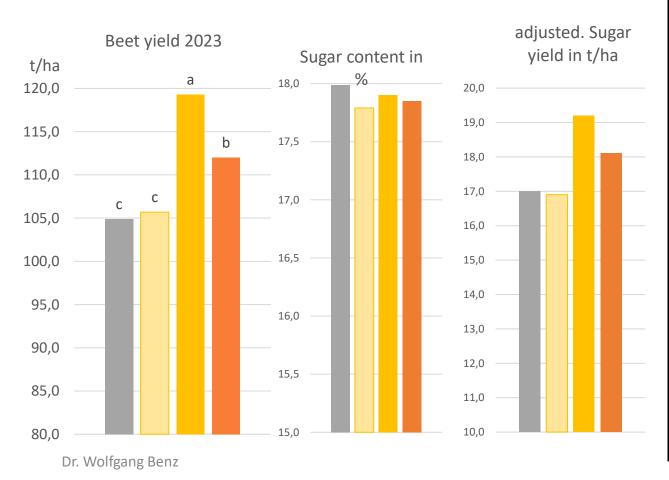
Random plot trial NORD, L	ower Saxony
BioChem agrar	
Location: Hameln,	
Lower Saxony	
Soil type: Loamy silt, BP: 70	0
pH: Organic matter:	
Variety: CALLEDIA, KWS Sa	atzucht
Planting date: 19.04.2023	10 plants/m ²
Emergence: 01.05.2023	Row closure: 10.07.2023
Precipitation: 2023: 981 m	m, 2017 to 2024 average
669 mm/year	
Harvest: 01.10.2023	

Random plot trial southwest, Baden-Würtemberg							
Crop Trials, Dr. Paul Reh, St.	ation South						
Location: Neidenstein, Krai	ichgau,						
Baden-Wuerttemberg							
Soil type: Silty loam							
pH: 6.3 Organic matte	r : 2.9%						
Variety: FITIS, SES van der I	Haave						
Planting date: 8.4.2024,	Seed density: 100 000 seeds/ha						
Emergence: 25.4.2024							
Precipitation: average 650	mm/year						
Test harvest: 30.7. 2024, leaves still healthy							
Main harvest: 25.9. 2024							
(leaves in the Photon trial severely damaged, despite 2 x							
fungicide measures on 22.	7. and 12.8.2024)						

Sugar beet 2023 and 2024

PHOTON application intervals well chosen - successful treatment

Random plot test, 2023, Hameln

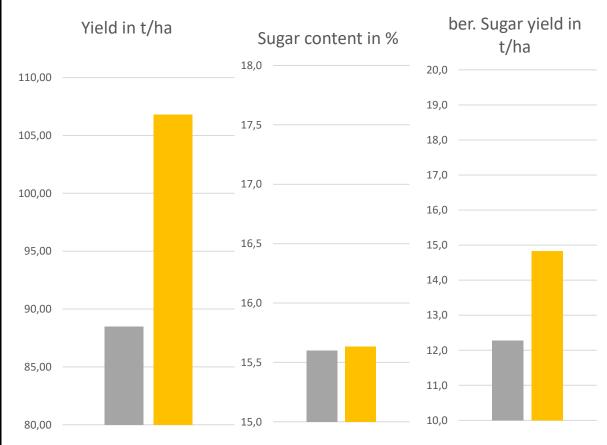

2023	April		May				June				July		august	Sept.	Oct.
	19.4		1.5	9.5	25.5	28.5	3.6		13.6	26.6		25.7	5.8		1.10
Hameln	Sowir	g	Emergence	Herbicide 1 PHOTON	Herbicid e 2	PHOTON	Herbicide 3	2	Fertilizat ion	PHOTON		Fungicid e	PHOTON		Harvest

FARMER test, 2024, Hameln

2024	Mai	rch	April			May			June			July		august	Sept.	Oct.
	6.3.	21.3.	13.4	16.4.	26.4.	7.5	25.05.	27.5.	1.6	6.6	19.6		25.7		20.8.	8.10
Hameln	Fertilizatio n + herbicide 1	Fortilizor	Sowing	Herbicide 2 Roundup	Emergence	Herbicide 3 PHOTON	PHOTON	Harrow	Herbicide 4	Fertilizatio n	PHOTON		Fungicide		Fungicide	Harvest

Location: Hameln, direct sowing Soil type: loamy silt, BP: 70 Variety: CALLEDIA, KWS Saatzucht Random plot trial

2023


Untreated. contr. PHOTON 20g, 4 applic. PHOTON 40g, 3 applications PHOTON 40g, 4 applic.

2024

Location: Hameln, mulch sowing Soil type: loamy silt, BP: 70 Variety: HIBOU SES van der Haave Farmer test

untreated. contr. PHOTON 40g, 3 applications

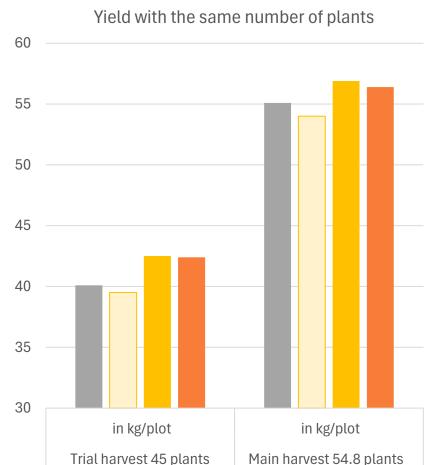
PHOTO

27

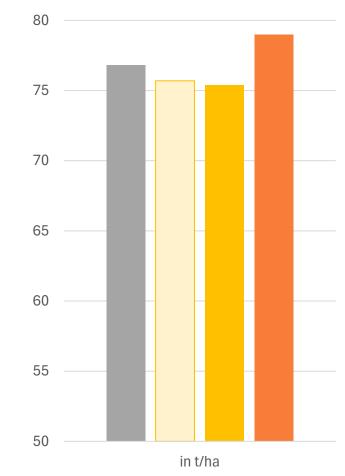
Neidenstein, Baden-Würtemberg, 2024

Random plot trial South-West,

Location: Neidenstein, Kraichgau, Baden-Wuerttemberg


Soil: Silty loam

Variety: FITIS, SES van der Haave


30.7. 2024 : test harvest (leaves still healthy)

25.9. 2024 : Main harvest (Leaves severely damaged in the Photon trial despite 2 x fungicide treatments on 22.7. and 12.8.2024)

1	Control
2	PHOTON SG 50, 20g/ha, 4x
4	PHOTON SG 50, 40g/ha, 3x
5	PHOTON SG 50, 40g/ha, 4x

Yield of all plants (main harvest)

Development of infestation of a mixed infection of CERCOSPORA BETICOLA (CERCBE) with Uromyces betae and Ramularia beticula, also sporadic infestation with SBR/Stolbur detected. CONTROL CELLS (observation window), without plant protection measures to record the development of the disease. 30.7. 2024 : Trial harvest, leaves still healthy 25.9. 2024 : Main harvest, leaves severely damaged in the Photon trial (despite 2 x fungicide treatments on 22.7. and 12.8.2024).

Date	CONTROL (without plant protection measures)							
	CERCBE Infestation level %	CERCBE distribution in %						
23.07.2024	1	30						
07.08.2024	9	99						
20.08.2024	44	100						
06.09.2024	95	100						
26.09.2024	93	100						

Conclusion: Further treatment with "double control" or incorporation of fungicide and insecticide measures into the fertilizer trial from the outset (2 blocks)

PHOTON[®] SG 50 in SUGAR BEETS, CONCLUSION:

If PHOTON[®] SG 50 is used correctly, we see the following advantages for the farmer:

Yield: at a yield level of 70 to 100 tons/ha, we expect an additional yield of at least 5 to 10 tons/ha on average, even under favourable conditions.

Prerequisite is: varieties with good resistance/tolerance properties are grown at the location and the fungicides and insecticides used are applied in accordance with the instructions for use (keeping an eye on threshold and apply products in time!)

Quality: slightly increased sugar content after PHOTON application, partial reduction of the alpha amino N content

In total: we see an increase in the adjusted sugar yield of at least 0.5 to 1.5 t/ha on average

Use of PHOTON [®] SG 50 in sugar beet:

Start of the treatments:

- Basically preventive use
- as early as possible, with uniform emergence provided.
 Stage: best at the beginning of the 2-leaf stage,
 4-leaf stage of sugar beet at the latest (e.g. NaK2)

Dosage:

Both in "normal years" and in years with "expected stress"

Central Europe: 40 g/ha , 3 - 4 x , 3 weeks apart

Further information is available at:

www.photoneurope.de

You can also request PDFs and presentations on the individual crops by e-mail at *info@photoneurope.de*

Advice and sales

Coordination Europe, **Consulting Arable Farming :**

Dr. Wolfgang Benz, Mobile: +49 152 33803056 E-mail: info@photoneurope.de

Advice on fruit and vegetable growing:

Frank Saalfeld, Mobile: +49 160 7832352 E-Mail: info@photoneurope.de

Sale:

Ropenstall 83a 51377 Leverkusen Phone: +49 2171 4010695 Mobile: +49 160 7832352 info@calci-agro.de

From left to right: Drs. C. Kupatt and W. Benz, F. Saalfeld

PHOTON[®] manufacturer and distributor worldwide:

Crop Microclimate Management Inc, Wilmington, USA and ROW Managing Director and Technical Director: Dr. Charles Kupatt Commercial Director: Nicholas Philipps

www.photonyield.com/de-de

Patent Act No., US 8846573, US 11638401 European Patent EP 2549864.